Artificial intelligence predictive models for money laundering prevention: A tripartite comparative analysis in the Andean region
DOI:
https://doi.org/10.62452/f2j9cv82Keywords:
Artificial intelligence, money laundering, Andean region, predictive modelsAbstract
Money laundering constitutes a critical threat to financial stability in Ecuador, Colombia, and Peru, countries facing unique challenges arising from drug trafficking and informal economies representing 37% to 77% of GDP. This research analyzes the potential of artificial intelligence predictive models to strengthen regional anti-money laundering systems through systematic comparative study. Findings reveal that, although technologies like Graph Neural Networks and XGBoost achieve accuracies exceeding 99%, none of the 68 analyzed studies specifically addresses the Andean context. The review identifies critical gaps in adaptation to informal economies, cross-border cooperation, and limited computational resources. Results suggest that ensemble models like Random Forest and XGBoost offer favorable balances between effectiveness and regional viability, while cross-border cooperation could generate superior detection benefits compared to independent national efforts. Successful implementation requires incremental strategies considering local socioeconomic particularities, secure data exchange frameworks, and simultaneous institutional strengthening to maximize the effectiveness of advanced technological systems.
Downloads
References
Alhajeri, R., & Alhashem, A. (2023). Using Artificial Intelligence to Combat Money Laundering. Intelligent Information Management, 15(04), 284–305. https://doi.org/10.4236/iim.2023.154014
Altman, E., Blanuša, J., von Niederhäusern, L., Egressy, B., Anghel, A., & Atasu, K. (2024). Realistic Synthetic Financial Transactions for Anti-Money Laundering Models. http://arxiv.org/abs/2306.16424
Cao, K., Zhang, T., & Huang, J. (2024). Advanced hybrid LSTM-transformer architecture for real-time multi-task prediction in engineering systems. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-55483-x
De la Torre Lascano, M. (2018). Utilización del sector financiero para el lavado de dinero: perspectiva desde la legislación ecuatoriana 1 Use of the financial sector for money laundering: a perspective from the Ecuadorian legislation. JURÍDICAS CUC, 14(1), 145–166. https://www.dspace.uce.edu.ec/server/api/core/bitstreams/d32890f3-2e68-45d6-b372-5e7121ffca79/content
Deprez, B., Vanderschueren, T., Baesens, B., Verdonck, T., & Verbeke, W. (2025). Network Analytics for Anti-Money Laundering -- A Systematic Literature Review and Experimental Evaluation. http://arxiv.org/abs/2405.19383
Effendi, F., & Chattopadhyay, A. (2024). Privacy-Preserving Graph-Based Machine Learning with Fully Homomorphic Encryption for Collaborative Anti-Money Laundering. http://arxiv.org/abs/2411.02926
Goldbarsht, D. (2023). Leveraging AI to Mitigate Money Laundering Risks in the Banking System. En Z. Bednarz & M. Zalnieriute (Eds.), Money, Power, and AI: Automated Banks and Automated States (pp. 51–69). Cambridge University Press.
Harris, D. A., Pyndiura, K. L., Sturrock, S. L., & Christensen, R. A. G. (2021). Using real-world transaction data to identify money laundering: Leveraging traditional regression and machine learning techniques. STEM Fellowship Journal, 7(1), 21–32. https://doi.org/10.17975/sfj-2021-006
Japinye, A. O. (2024). Integrating Machine Learning in Anti-Money Laundering through Crypto: A Comprehensive Performance Review. European Journal of Accounting, Auditing and Finance Research, 12(4), 54–80. https://doi.org/10.37745/ejaafr.2013/vol12n45480
Kurshan, E., Mehta, D., Bruss, B., & Balch, T. (2024). AI versus AI in Financial Crimes & Detection: GenAI Crime Waves to Co-Evolutionary AI. https://arxiv.org/abs/2410.09066
Labanca, D., Primerano, L., Markland-Montgomery, M., Polino, M., Carminati, M., & Zanero, S. (2022). Amaretto: An Active Learning Framework for Money Laundering Detection. IEEE Access, 10, 41720–41739. https://doi.org/10.1109/ACCESS.2022.3167699
López, G., & Mendoza Valencia, C. (2022). Estimación del tamaño de la economía sombra: evidencia empírica para Ecuador, Perú y Colombia. Revista Economía y Política, 36, 97–117. https://doi.org/10.25097/rep.n36.2022.07
Prisznyák, A. (2022). Bankrobotics: Artificial Intelligence and Machine Learning Powered Banking Risk Management : Prevention of Money Laundering and Terrorist Financing. Pénzügyi Szemle = Public Finance Quarterly, 67(2), 288–303. https://doi.org/10.35551/PFQ_2022_2_8
Rivera-Rhon, R., & Bravo-Grijalva, C. (2020). Crimen organizado y cadenas de valor: el ascenso estratégico del Ecuador en la economía del narcotráfico. URVIO. Revista Latinoamericana de Estudios de Seguridad, 28, 8–24. https://doi.org/10.17141/urvio.28.2020.4410
Rouhollahi, Z. (2021). Towards Artificial Intelligence Enabled Financial Crime Detection. http://arxiv.org/abs/2105.10866
Ruchay, A., Feldman, E., Cherbadzhi, D., & Sokolov, A. (2023). The Imbalanced Classification of Fraudulent Bank Transactions Using Machine Learning. Mathematics, 11(13), 2862. https://doi.org/10.3390/math11132862
Syahda, I. F., Putra, R. D., Syafa, T. S., & Sinlae, E. S. P. (2024). Prevention and Eradication of Money Laundering Crime in Banking. Veteran Law Review, 7(2), 222–231. https://doi.org/10.35586/velrev.v7i2.8098
Usman, A., Naveed, N., & Munawar, S. (2023). Intelligent Anti-Money Laundering Fraud Control Using Graph-Based Machine Learning Model for the Financial Domain. Journal of Cases on Information Technology, 25(1), 1–20. https://doi.org/10.4018/JCIT.316665
Wu, R., Ma, B., Jin, H., Zhao, W., Wang, W., & Zhang, T. (2023). GRANDE: a neural model over directed multigraphs with application to anti-money laundering. http://arxiv.org/abs/2302.02101
Zúñiga Rodríguez, L. (2020). La captura del Estado peruano por el narcotráfico: el caso de los “cuello blanco del puerto.” Revista de Estudios En Seguridad Internacional, 6(2), 175–191. https://doi.org/10.18847/1.12.10
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mariela Marlene Tumbaco-Tutiven, Néstor Daniel Mendoza-Guanoliza, Cinthya Fernanda Rivera-Pizarro, Katiuska Tammi Miranda-Salvatierra, Gladys María Álvarez-Giñin (Autor/a)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish in Revista Metropolitana de Ciencias Aplicadas (REMCA), agree to the following terms:
1. Copyright
Authors retain unrestricted copyright to their work. Authors grant the journal the right of first publication. To this end, they assign the journal non-exclusive exploitation rights (reproduction, distribution, public communication, and transformation). Authors may enter into additional agreements for the non-exclusive distribution of the version of the work published in the journal, provided that acknowledgment of its initial publication in this journal is given.
© The authors.
2. License
The articles are published in the journal under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0). The terms can be found at: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
This license allows:
- Sharing: Copying and redistributing the material in any medium or format.
- Adapting: Remixing, transforming, and building upon the material.
Under the following terms:
- Attribution: You must give appropriate credit, provide a link to the license, and indicate if any changes were made. You may do this in any reasonable manner, but not in any way that suggests the licensor endorses or sponsors your use.
- NonCommercial: You may not use the material for commercial purposes.
- ShareAlike: If you remix, transform, or build upon the material, you must distribute your creation under the same license as the original work.
There are no additional restrictions. You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.