Artificial intelligence predictive models for money laundering prevention: A tripartite comparative analysis in the Andean region

Authors

DOI:

https://doi.org/10.62452/f2j9cv82

Keywords:

Artificial intelligence, money laundering, Andean region, predictive models

Abstract

Money laundering constitutes a critical threat to financial stability in Ecuador, Colombia, and Peru, countries facing unique challenges arising from drug trafficking and informal economies representing 37% to 77% of GDP. This research analyzes the potential of artificial intelligence predictive models to strengthen regional anti-money laundering systems through systematic comparative study. Findings reveal that, although technologies like Graph Neural Networks and XGBoost achieve accuracies exceeding 99%, none of the 68 analyzed studies specifically addresses the Andean context. The review identifies critical gaps in adaptation to informal economies, cross-border cooperation, and limited computational resources. Results suggest that ensemble models like Random Forest and XGBoost offer favorable balances between effectiveness and regional viability, while cross-border cooperation could generate superior detection benefits compared to independent national efforts. Successful implementation requires incremental strategies considering local socioeconomic particularities, secure data exchange frameworks, and simultaneous institutional strengthening to maximize the effectiveness of advanced technological systems.

Downloads

Download data is not yet available.

References

Alhajeri, R., & Alhashem, A. (2023). Using Artificial Intelligence to Combat Money Laundering. Intelligent Information Management, 15(04), 284–305. https://doi.org/10.4236/iim.2023.154014

Altman, E., Blanuša, J., von Niederhäusern, L., Egressy, B., Anghel, A., & Atasu, K. (2024). Realistic Synthetic Financial Transactions for Anti-Money Laundering Models. http://arxiv.org/abs/2306.16424

Cao, K., Zhang, T., & Huang, J. (2024). Advanced hybrid LSTM-transformer architecture for real-time multi-task prediction in engineering systems. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-55483-x

De la Torre Lascano, M. (2018). Utilización del sector financiero para el lavado de dinero: perspectiva desde la legislación ecuatoriana 1 Use of the financial sector for money laundering: a perspective from the Ecuadorian legislation. JURÍDICAS CUC, 14(1), 145–166. https://www.dspace.uce.edu.ec/server/api/core/bitstreams/d32890f3-2e68-45d6-b372-5e7121ffca79/content

Deprez, B., Vanderschueren, T., Baesens, B., Verdonck, T., & Verbeke, W. (2025). Network Analytics for Anti-Money Laundering -- A Systematic Literature Review and Experimental Evaluation. http://arxiv.org/abs/2405.19383

Effendi, F., & Chattopadhyay, A. (2024). Privacy-Preserving Graph-Based Machine Learning with Fully Homomorphic Encryption for Collaborative Anti-Money Laundering. http://arxiv.org/abs/2411.02926

Goldbarsht, D. (2023). Leveraging AI to Mitigate Money Laundering Risks in the Banking System. En Z. Bednarz & M. Zalnieriute (Eds.), Money, Power, and AI: Automated Banks and Automated States (pp. 51–69). Cambridge University Press.

Harris, D. A., Pyndiura, K. L., Sturrock, S. L., & Christensen, R. A. G. (2021). Using real-world transaction data to identify money laundering: Leveraging traditional regression and machine learning techniques. STEM Fellowship Journal, 7(1), 21–32. https://doi.org/10.17975/sfj-2021-006

Japinye, A. O. (2024). Integrating Machine Learning in Anti-Money Laundering through Crypto: A Comprehensive Performance Review. European Journal of Accounting, Auditing and Finance Research, 12(4), 54–80. https://doi.org/10.37745/ejaafr.2013/vol12n45480

Kurshan, E., Mehta, D., Bruss, B., & Balch, T. (2024). AI versus AI in Financial Crimes & Detection: GenAI Crime Waves to Co-Evolutionary AI. https://arxiv.org/abs/2410.09066

Labanca, D., Primerano, L., Markland-Montgomery, M., Polino, M., Carminati, M., & Zanero, S. (2022). Amaretto: An Active Learning Framework for Money Laundering Detection. IEEE Access, 10, 41720–41739. https://doi.org/10.1109/ACCESS.2022.3167699

López, G., & Mendoza Valencia, C. (2022). Estimación del tamaño de la economía sombra: evidencia empírica para Ecuador, Perú y Colombia. Revista Economía y Política, 36, 97–117. https://doi.org/10.25097/rep.n36.2022.07

Prisznyák, A. (2022). Bankrobotics: Artificial Intelligence and Machine Learning Powered Banking Risk Management : Prevention of Money Laundering and Terrorist Financing. Pénzügyi Szemle = Public Finance Quarterly, 67(2), 288–303. https://doi.org/10.35551/PFQ_2022_2_8

Rivera-Rhon, R., & Bravo-Grijalva, C. (2020). Crimen organizado y cadenas de valor: el ascenso estratégico del Ecuador en la economía del narcotráfico. URVIO. Revista Latinoamericana de Estudios de Seguridad, 28, 8–24. https://doi.org/10.17141/urvio.28.2020.4410

Rouhollahi, Z. (2021). Towards Artificial Intelligence Enabled Financial Crime Detection. http://arxiv.org/abs/2105.10866

Ruchay, A., Feldman, E., Cherbadzhi, D., & Sokolov, A. (2023). The Imbalanced Classification of Fraudulent Bank Transactions Using Machine Learning. Mathematics, 11(13), 2862. https://doi.org/10.3390/math11132862

Syahda, I. F., Putra, R. D., Syafa, T. S., & Sinlae, E. S. P. (2024). Prevention and Eradication of Money Laundering Crime in Banking. Veteran Law Review, 7(2), 222–231. https://doi.org/10.35586/velrev.v7i2.8098

Usman, A., Naveed, N., & Munawar, S. (2023). Intelligent Anti-Money Laundering Fraud Control Using Graph-Based Machine Learning Model for the Financial Domain. Journal of Cases on Information Technology, 25(1), 1–20. https://doi.org/10.4018/JCIT.316665

Wu, R., Ma, B., Jin, H., Zhao, W., Wang, W., & Zhang, T. (2023). GRANDE: a neural model over directed multigraphs with application to anti-money laundering. http://arxiv.org/abs/2302.02101

Zúñiga Rodríguez, L. (2020). La captura del Estado peruano por el narcotráfico: el caso de los “cuello blanco del puerto.” Revista de Estudios En Seguridad Internacional, 6(2), 175–191. https://doi.org/10.18847/1.12.10

Downloads

Published

2025-09-13

How to Cite

Tumbaco-Tutiven, M. M. ., Mendoza-Guanoliza, N. D. ., Rivera-Pizarro, C. F. ., Miranda-Salvatierra, K. T. ., & Álvarez-Giñin, G. M. (2025). Artificial intelligence predictive models for money laundering prevention: A tripartite comparative analysis in the Andean region. Revista Metropolitana De Ciencias Aplicadas, 8(S2), 190-205. https://doi.org/10.62452/f2j9cv82