Behavior of physical, chemical and biological properties of soil in agricultural production systems

Authors

DOI:

https://doi.org/10.62452/se591c34

Keywords:

Soil degradation, erosion and compaction, anthropogenic activity, production systems

Abstract

Soil is a non-renewable natural resource that guarantees plant nutrition, agricultural production and food sustenance for a constantly growing population. The objective of the work was to evaluate the behavior of physical, chemical and biological properties in agroecosystems established on the Santa Inés farm, El Oro, Ecuador. In five agroecosystems (banana, corn, pastures, cocoa and forest) previously selected, identified and georeferenced, soil samples were taken at three depths of the profile (0-15, 15-30 and 30-45 cm). The current state of soil degradation was estimated by optimal scaling from the values obtained in real density (Dr), pH, total N contents, assimilable P, exchangeable K, Ca, Mg, EC, CEC, MO and the textural class categories. Intensive and continued management in agroecosystems where alternatives for soil conservation and improvement are not applied cause an increase in compaction and a decrease in the content of OM, CIC and pH, as well as its ability to produce production in a sustained manner. The agricultural management of agroecosystems causes a negative impact on the physical, chemical and biological properties of the soil when practices that contribute to its conservation and improvement are not applied.

Downloads

Download data is not yet available.

Author Biography

  • Irán Rodríguez-Delgado, Universidad Técnica de Machala. Ecuador.

     

     

References

Amaro, E. J., Marquez, E., & Llanes, J. M. (2019). Diagnóstico inicial de la evolución de un suelo degradado. Avances, 21(1). https://www.redalyc.org/journal/6378/637869112010/637869112010.pdf

Castro, A., Delgado, D. M., González, R. (2022). La degradación del suelo, impactos y contexto normativo. https://librosesmic.com/index.php/editorial/catalog/download/92/88/2299?inline=1 CEPAL. (2012). Diagnóstico de la Estadistica del Agua en Ecuador.

Ecuador. Agencia de Regulación y Control Fito y Zoosanitario. (2022). Sitio oficial. https://www.gob.ec/arcfz

Ecuador. Instituto Nacional de Meteorología e Hidrología. (2016). Boletín Climatológico Anual. https://www.inamhi.gob.ec/meteorologia/boletines/bol_sem.pdf

Ecuador. Ministerio de Agricultura y Ganadería. (2020). Resumen Ejecutivo de los Diagnósticos Territoriales del Sector Agrario. https://doi.org/10.2307/j.ctv17hm8pq.4

Garrido, L. A. (2020). Efectos del bocashi en la producción de plantas de Calathea lutea Schult (Bijao) bajo condiciones de vivero en Tingo María. (Trabajo de titulación). Universidad Nacional Agraria de la Selva.

Geissen, V., López De Llergo-Juárez, J. G., Galindo-Alcántara, A., & Ramos-Reyes, R. (2008). Erosión Superficial y Carstificación en Macuspana, Tabasco, Sureste De México Superficial Soil Losses and Karstification in Macuspana, Tabasco, Southeast of México. Agrociencia, 42, 605–614. http://www.scielo.org.mx/pdf/agro/v42n6/v42n6a1.pdf

Intergovernmental Technical Panel on Soils. (2020). Towards a definition of soil health. In Soil Science Society of America Journal. https://www.fao.org/3/cb1110en/cb1110en.pdf

Lanz, B., Dietz, S., & Swanson, T. (2018). The Expansion of Modern Agriculture and Global Biodiversity Decline: An Integrated Assessment. Ecological Economics, 144, 260–277. https://doi.org/10.1016/j.ecolecon.2017.07.018

Liu, H., Zak, D., Rezanezhad, F., & Lennartz, B. (2019). Soil degradation determines release of nitrous oxide and dissolved organic carbon from peatlands. Environmental Research Letters, 14(9). https://doi.org/10.1088/1748-9326/ab3947

López, G., Muñoz, D., Hernández, M., Soler, A., & López, G. (2008). Impacto De La Pérdida De La Vegetación Sobre Las Propiedades De Un Suelo Aluvial. Terra Latinoamaericana, 27, 2–10. http://www.scielo.org.mx/pdf/tl/v27n3/v27n3a8.pdf

Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2016). Estado Mundial del Recurso Suelo (EMRS). https://openknowledge.fao.org/server/api/core/bitstreams/07a444e7-97a3-4e1f-b5d9-ddd84ad129c6/content

Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2021). Portal de Suelos de la FAO. https://www.fao.org/soils-portal/soil-degradation-restoration/es/

Quijano-Cuervo, L. G., Robledo-Ospina, L. E., García-Hernández, L. F., & Escobar-Sarria, F. (2021). Arañas: tejiendo un eslabón crucial para el equilibrio de los agroecosistemas. Revista Digital Universitaria, 22(3). https://doi.org/10.22201/cuaieed.16076079e.2021.22.3.5

Reyes-Palomino, S. E., & Cano Ccoa, D. M. (2022). Efectos de la agricultura intensiva y el cambio climático sobre la biodiversidad. Revista de Investigaciones Altoandinas - Journal of High Andean Research, 24(1), 53–64. https://doi.org/10.18271/ria.2022.328

Villaseñor, D., Chabla, J., & Luna, E. (2015). Caracterización física y clasificación taxonómica de algunos suelos dedicados a la actividad agrícola de la Provincia de El Oro. Revista Científica Cumbres, 1(2), 28–34. https://doi.org/10.48190/cumbres.v1n2a5

Yan, P., Wu, L., Wang, D., Fu, J., Shen, C., Li, X., Zhang, L., Zhang, L., Fan, L., & Wenyan, H. (2020). Soil acidification in Chinese tea plantations. Science of the Total Environment, 715. https://doi.org/10.1016/j.scitotenv.2020.136963

Zou, Z., Mi, W., Li, X., Hu, Q., Zhang, L., Zhang, L., Fu, J., Li, Z., Han, W., & Yan, P. (2023). Biochar application method influences root growth of tea (Camellia sinensis L.) by altering soil biochemical properties. Scientia Horticulturae, 315, 1–6. https://ui.adsabs.harvard.edu/abs/2023ScHor.31511960Z/abstract

Downloads

Published

2025-03-26

How to Cite

Rodríguez-Delgado, I. ., Martín-Martín, G. J. ., Pérez-Iglesias, H. I. ., & García-Batista, R. M. . (2025). Behavior of physical, chemical and biological properties of soil in agricultural production systems. Revista Metropolitana De Ciencias Aplicadas, 8(S1), 184-196. https://doi.org/10.62452/se591c34