Quantification of the economic value of CO2 in a plantation of Theobroma cacao l

Authors

DOI:

https://doi.org/10.62452/b6h2mt10

Keywords:

Biomass, litter, cocoa CCN51, economic development

Abstract

The ecosystem service values generated by agricultural production models can be used to improve the economic income of the farmer. As is the case of carbon storage or payments for the non-emission of CO2. In this context the objectives were set: to estimate in a plot of cocoa type CCN51 the storage levels of CO2 in litter and standing trees and to project the economic contribution for sequestering CO2. For this, three plots were selected where a 15 m transept was delimited, in each 5 m leaf litter samples were taken and the diameter of the cacao trees was measured, to estimate the volume. The process of quantifying the biomass was by means of alometric equations. The results indicated a greater accumulation of CO2 in the litter (436.96 kg ha-1), showing statistical significance (P <0.05) with respect to the value obtained in the trees (69.00 kg ha-1).

Downloads

Download data is not yet available.

References

Barrezueta-Unda, S., Luna-Romero, A., & Barrera-León, J. (2018). Almacenamiento de carbono en varios suelos cultivados con cacao en la provincia El Oro-Ecuador. Revista Científica Agroecosistemas, 6(1), 154–161. Recuperado de https://aes.ucf.edu.cu/index.php/aes/article/view/177/212

Cerda, R., et al. (2014). Contribution of cocoa agroforestry systems to family income and domestic consumption: looking toward intensification. Agroforestry Systems, 88(6), 957–981. Recuperado de http://publications.cirad.fr/une_notice.php?dk=574493

Concha, J. Y., Alegre, J. C., & Pocomucha, V. (2007). Determinación de las reservas de carbono en la biomasa aérea de sistemas agroforestales de Theobroma cacao l. en el departamento de San Martín, Perú. Ecología Aplicada, 6, 75–82. Recuperado de http://www.scielo.org.pe/pdf/ecol/v6n1-2/a09v6n1-2.pdf

Dawoe, E. K., Quashie-Sam, J. S., & Oppong, S. K. (2014). Effect of land-use conversion from forest to cocoa agroforest on soil characteristics and quality of a Ferric Lixisol in lowland humid Ghana. Agroforestry Systems, 88(1), 87–99. Recuperado de https://www.mendeley.com/catalogue/effect-landuse-conversion-forest-cocoa-agroforest-soil-characteristics-quality-ferric-lixisol-lowlan/

Díaz, P., Ruiz, G., Tello, C., & Arévalo, L. (2016). Carbono almacenado en cinco sistemas de uso de tierra , en la región San Martín Perú. Revista Intenacional de Desarrollo Regional Sustentable, 1(2), 57–67. Recuperado de http://rinderesu.com/index.php/rinderesu/article/download/22/06

Domínguez-Junco, O., Rojas-Hernández, D., Gómez-Hernández, J., & Medina-Peña, R. (2017). Metodología para gestión contable de los servicios ecosistémicos forestales con enfoque de cadena de valor. Revista Cientifica Agroecosistemas, 51(1), 71–78. Recuperado de https://aes.ucf.edu.cu/index.php/aes/article/view/100/136

Farquhar, G. D., Ehleringer, J. R., & Hubick, K. T. (1989). Carbon Isotope Discrimination and Photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40(1), 503–537. Recuperado de https://www.annualreviews.org/doi/abs/10.1146/annurev.pp.40.060189.002443

International Cocoa Organization. (2018). ICCO Quarterly Bulletin of Cocoa Statistics (Vol. XLIV). Geneva: ICCO.

Mithöfer, D., et al. (2017). Unpacking ‘sustainable’ cocoa: do sustainability standards, development projects and policies address producer concerns in Indonesia, Cameroon and Peru? International Journal of Biodiversity Science, Ecosystem Services & Management, 13(1), 444–469. Recuperado de https://www.cifor.org/library/6928/

Pocomucha, V., Alegre, J., & Abregú, L. (2016). Análisis socio económico y carbono almacenado en sistemas agroforestales de cacao (Theobroma cacao L.). Huánuco. Ecología Aplicada, 15(2), 108–114. Recuperado de http://revistas.lamolina.edu.pe/index.php/eau/article/view/750

Somarriba, E., et al. (2013). Carbon stocks and cocoa yields in agroforestry systems of Central America. Agriculture, Ecosystems & Environment, 173, 46–57. Recuperado de http://www.worldcocoafoundation.org/wp-content/uploads/files_mf/somarriba2013environmentsustainabilityagroforestrycarbon.pdf

Spokas, K. A., et al. (2012). Biochar: A Synthesis of Its Agronomic Impact beyond Carbon Sequestration. Journal of Environment Quality, 41(4), 973. Recuperado de https://www.ncbi.nlm.nih.gov/pubmed/22751040

Ward, A., et al. (2016). Using carbon finance to support climate policy objectives in high mountain ecosystems Using carbon finance to support climate policy objectives in high mountain ecosystems. Climate Policy, 16(6), 732–751. Recuperado de https://www.tandfonline.com/doi/abs/10.1080/14693062.2015.1046413

Downloads

Published

2019-01-01

How to Cite

Ríos-Carrión, P. ., Barrezueta-Unda, S. ., Quezada-Abad, C. ., & Moreira-Blaci, W. . (2019). Quantification of the economic value of CO2 in a plantation of Theobroma cacao l. Revista Metropolitana De Ciencias Aplicadas, 2(1), 134-140. https://doi.org/10.62452/b6h2mt10