Hybrid wireless network architectures for rural telecommunications: analysis of edge intelligence strategies.

Authors

DOI:

https://doi.org/10.62452/wfkgdc56

Keywords:

Hybrid architectures, rural telecommunications, edge intelligence, wireless networks, rural connectivity, multi-objective optimization

Abstract

Rural telecommunications face unique challenges requiring technological solutions specifically adapted to low population density constraints, infrastructural limitations, and economic sustainability. This research developed a systematic characterization of hybrid wireless network architectures for rural contexts through documentary analysis of implementations in specialized literature. Descriptive-correlational methodology was applied integrating systematic content analysis with performance findings synthesis to identify patterns between technological components and effectiveness metrics. Results established four main configurations: cellular-cell-free with conjugate beamforming, 5G-LPWAN with virtual slicing for IoT, LiFi-WiFi with adaptive handover, and satellite-terrestrial with MEC. Edge intelligence strategies evaluation revealed five distinct approaches: MEET for cost distribution through connected vehicles, LEE for multi-objective energy-learning optimization, collaborative for distributed training, and multi-service for time-critical control. Theoretical implications establish that effective hybridization requires intelligent coordination specifically adapted to rural contexts, while practical implications provide specific guidance for system designers, telecommunications operators, and development organizations in implementing rural connectivity grounded in empirical evidence.

Downloads

Download data is not yet available.

Author Biography

  • Leonardo García-Correa, Instituto Superior Tecnológico Vicente Rocafuerte. Ecuador.

     

     

References

Aijaz, A., Jiang, N., & Khan, A. (2023). Toward multi-service edge-intelligence paradigm: Temporal-adaptive prediction for time-critical control over wireless. IEEE Internet of Things Magazine, 6(1), 96–101. https://doi.org/10.1109/IOTM.001.2200139

Besjedica, T., Fertalj, K., Lipovac, V., & Zakarija, I. (2023). Evolution of hybrid LiFi–WiFi networks: A survey. Sensors, 23(9), 4252. https://doi.org/10.3390/s23094252

Chaoub, A., Giordani, M., Lall, B., Bhatia, V., Kliks, A., Mendes, L., Rabie, K., Saarnisaari, H., Singhal, A., Zhang, N., Dixit, S., & Zorzi, M. (2022). 6G for bridging the digital divide: Wireless connectivity to remote areas. IEEE Wireless Communications, 29(1), 160–168. https://doi.org/10.1109/MWC.001.2100137

Dai, Z., Xu, J., Xu, X., Li, R., & Zeng, Y. (2024). Performance analysis of hybrid cellular and cell-free MIMO network. https://doi.org/10.48550/arxiv.2406.01922

Davies, E., Chung, A., Broadbent, M., Macleod, A., & Race, N. (2022). 5G in the wild: Performance of C-band 5G-NR in rural low-power fixed wireless access. IEEE Future Networks World Forum (FNWF). Montreal, Canada.

El Falou, A., & Alouini, M.-S. (2023). Enhancement of rural connectivity by recycling TV towers with massive MIMO techniques. IEEE Communications Magazine, 61(4), 78–83. https://doi.org/10.1109/MCOM.003.2200257

Fourati, F., Alsamhi, S. H., & Alouini, M.-S. (2022). Bridging the urban-rural connectivity gap through intelligent space, air, and ground networks. http://arxiv.org/abs/2202.12683

Johnson, D. L., & Roux, K. (2008). Building rural wireless networks. Proceedings of the 2008 ACM Workshop on Wireless Networks and Systems for Developing Regions. San Francisco, USA.

Kaushik, A., & Al-Raweshidy, H. S. (2022). A hybrid latency- and power-aware approach for beyond fifth-generation Internet-of-Things edge systems. IEEE Access, 10, 87974–87989. https://doi.org/10.1109/ACCESS.2022.3200035

Letaief, K. B., Shi, Y., Lu, J., & Lu, J. (2022). Edge artificial intelligence for 6G: Vision, enabling technologies, and applications. IEEE Journal on Selected Areas in Communications, 40(1), 5–36. https://doi.org/10.1109/JSAC.2021.3126076

Li, X., Wang, S., Zhu, G., Zhou, Z., Huang, K., & Gong, Y. (2022). Data partition and rate control for learning and energy efficient edge intelligence. IEEE Transactions on Wireless Communications, 21(11), 9127–9142. https://doi.org/10.1109/TWC.2022.3173262

Lin, Y., Feng, W., Zhou, T., Wang, Y., Chen, Y., Ge, N., & Wang, C.-X. (2022). Integrating satellites and mobile edge computing for 6G wide-area edge intelligence: Minimal structures and systematic thinking. http://arxiv.org/abs/2208.07528

Liu, X., Yu, J., Liu, Y., Gao, Y., Mahmoodi, T., Lambotharan, S., & Tsang, D. H. K. (2022). Distributed intelligence in wireless networks. http://arxiv.org/abs/2208.00545

Marshall, A., Wilson, C. A., & Dale, A. (2023). New pathways to crisis resilience: Solutions for improved digital connectivity and capability in rural Australia. Media International Australia, 189(1), 24–42. https://doi.org/10.1177/1329878X231183292

Nguyen, N. T., Vu, Q. D., Lee, K., & Juntti, M. (2022). Hybrid relay-reflecting intelligent surface-assisted wireless communications. IEEE Transactions on Vehicular Technology, 71(6), 6228–6244. https://doi.org/10.1109/TVT.2022.3158686

Ogbodo, E. U., Abu-Mahfouz, A. M., & Kurien, A. M. (2022). A survey on 5G and LPWAN-IoT for improved smart cities and remote area applications: From the aspect of architecture and security. Sensors, 22(16), 6313. https://doi.org/10.3390/s22166313

Sun, Y., Xie, B., Zhou, S., & Niu, Z. (2022). MEET: Mobility-enhanced edge intelligence for smart and green 6G networks. https://doi.org/10.48550/arXiv.2210.15111

Zeng, L., Ye, S., Chen, X., & Yang, Y. (2024). Implementation of big AI models for wireless networks with collaborative edge computing. http://arxiv.org/abs/2404.17766

Zhang, T., Zu, G., Islam, T. U., Gossling, E., Babu, S., Qiao, D., & Zhang, H. (2024). Exploring wireless channels in rural areas: A comprehensive measurement study. http://arxiv.org/abs/2404.17434

Published

2025-12-21

How to Cite

Neira-Reyes, I. A. ., García-Correa, L. ., Loor-Quimíz, E. del R. ., Decimavilla-Alarcón, D. C. ., & Pillajo-Mila, M. del R. . (2025). Hybrid wireless network architectures for rural telecommunications: analysis of edge intelligence strategies. Revista Metropolitana De Ciencias Aplicadas, 9(1), 51-63. https://doi.org/10.62452/wfkgdc56