Linear regression in the sales process and its influence on organizational competitiveness in Big Data environments

Authors

DOI:

https://doi.org/10.62452/1bt7mb66

Keywords:

Linear regression, organizational competitiveness, fashion retail, Big Data analysis, sales process

Abstract

In the competitive fashion retail sector, sales optimization through the use of Big Data has become an essential element for sustaining competitiveness. This study applied linear regression models to analyze the influence of key variables on the performance of clothing stores, using simulated data processed in Apache Spark. Through a backward elimination process, the initial model was refined, and it was identified that conversion rate and price satisfaction are positively correlated with competitiveness, while competitive pricing shows a negative relationship. These findings reveal that beyond price reduction, factors related to the conversion of interest into purchase and the perception of satisfaction are decisive in shaping the value proposition of organizations. Consequently, linear regression emerges as a valuable analytical tool to guide strategic decisions that strengthen competitiveness in fashion retail within a Big Data–driven environment.

Downloads

Download data is not yet available.

References

Akand, F. (2024). Impact of social media influencers on purchase intentions: A comprehensive study across industries. International Journal of Multidisciplinary Research Updates, 7(2), 61–67. https://doi.org/10.53430/ijmru.2024.7.2.0035

Alexander, M., Kusleika, R., & Walkenbach, J. (2018). Excel 2019 bible (1.ª ed.). Wiley.

Anderson, D. R., Sweeney, D. J., & Williams, T. A. (2024). Statistics for Business & Economics. Cengage Learning.

Dolgui, A., Ivanov, D., & Sokolov, B. (2018). Ripple effect in the supply chain: An analysis and recent literature. International Journal of Production Research, 56(1–2), 414–430. https://doi.org/10.1080/00207543.2017.1387680

Firework Staff. (2024). Los 10 principales desafíos de retención de clientes y cómo superarlos. https://firework.com/es/blog/desafios-retencion-clientes

Gong, Y. (2024). The impact of Big Data on the fashion industry. AEMPS, 143. https://doi.org/10.54254/2754-1169/2024.GA18973

Gujarati, D. (2023). Essentials of Econometrics. SAGE Publications, Inc.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2022). Multivariate data analysis (9.ª ed.). Pearson Education.

Khan, F. R., Phung, S. P., & Raju, V. (2024). The impact of social media influencers on consumer purchase intention in conservative societies. Journal of Reproducible Research, 2(2), 172–181.

Kumar, V., Jones, E., Venkatesan, R., & Leone, R. P. (2011). Is market orientation a source of sustainable competitive advantage or simply the cost of competing? Journal of Marketing, 75(1), 16–30. https://doi.org/10.1509/jm.75.1.16

Liu, Y., & Ding, Z. (2022). Personalized recommendation model of electronic commerce in new media era based on semantic emotion analysis. Frontiers in psychology, 13, 952622. https://doi.org/10.3389/fpsyg.2022.952622

Polacek, L., Ulman, M., Cihelka, P., & Šilerová, E. (2024). Dynamic pricing in e-commerce: Bibliometric analysis. Acta Informatica Pragensia, 13(23). https://doi.org/10.18267/j.aip.227

Potla, R. T. (2022). Scalable Machine Learning Algorithms for Big Data Analytics: Challenges and Opportunities. Journal of Artificial Intelligence Research, 2(2), 124–141. Retrieved from https://thesciencebrigade.com/JAIR/article/view/327

Rawlings, J. O., Pantula, S. G., & Dickey, D. A. (1998). Applied regression analysis: A research tool (2.ª ed.). Springer.

Saldaña, J. (2021). The coding manual for qualitative researchers (4.ª ed.). SAGE Publications.

Serrano-Orellana, K., Sousa-Barros, I., & Chang-Fernández, A. (Comp.). (2025). Transformación digital, tributación y nuevas tecnologías: Estudios aplicados en el contexto empresarial ecuatoriano. Sophia Editions.

Shankar, V. (2019). Big data and analytics in retailing. NIM Marketing Intelligence Review, 11(1), 37–40. https://doi.org/10.2478/nimmir-2019-0006

Varma, M. A. (2022). Use of big data in the process of customer segmentation in the retail sector. Technoarete Transactions on Advances in Data Science and Analytics, 1(2), 1–6. https://doi.org/10.36647/TTADSA/01.02.A002

Wickham, H., Averick, M., Bryan, J., Chang, W., D’Agostino McGowan, L., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo, K., & Yutani, H. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686. https://doi.org/10.21105/joss.01686

Wooldridge, J. M. (2020). Introductory econometrics: A modern approach. Cengage Learning.

Downloads

Published

2025-09-20

How to Cite

Solano-Morales, B. . (2025). Linear regression in the sales process and its influence on organizational competitiveness in Big Data environments. Revista Metropolitana De Ciencias Aplicadas, 8(4), 324-338. https://doi.org/10.62452/1bt7mb66