Analysis of trends and variability of precipitation in the southeastern basins of Ecuador
DOI:
https://doi.org/10.62452/9s3rgp97Keywords:
Mann-Kendall, CUSUM, geostatistics, kriging, precipitationAbstract
This study analyzes the trend and variability of precipitation in the river basins of Jubones, Puyango, and Zarumilla in southeastern Ecuador, using monthly and annual time series from 11 meteorological stations. Statistical methods such as linear regression, Mann-Kendall tests, and CUSUM were applied, along with geostatistical techniques like Kriging to represent the spatial distribution of precipitation. As a result, a significant annual trend (p-value < 0.05) was observed in eight meteorological stations. High spatial variability in annual precipitation trends was detected within the Zarumilla, Puyango, and Jubones river basins. Regarding spatial variability, the best-fitting model was the spherical one, with a coefficient of variation (CV) of 40.76%, high predictive performance (Nash = 0.982), and RMSE of 30.85 mm, highlighting spatial heterogeneity. The topographic profile revealed an irregular distribution of precipitation, with peaks at intermediate altitudes. The linear regression between altitude and mean annual precipitation was not significant, underscoring the influence of other geographic and atmospheric factors. This study strengthens water resource management and supports agricultural planning in the face of climate change.
Downloads
References
Arriola, G., Idrogo, C., Marín, N., Piedra, J., & Villegas, L. (2022). Evaluación de la agresividad climática y concentración de precipitaciones en la cuenca Chancay-Lambayeque, Perú. Revista Politécnica, 50(2), 15–22. http://scielo.senescyt.gob.ec/pdf/rpolit/v50n2/2477-8990-rpolit-50-02-00015.pdf
Buytaert, W., Celleri, R., Willems, P., De Bièvre, B., & Wyseure, G. (2006). Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes. Journal of Hydrology, 329(3–4), 413–421. https://doi.org/10.1016/j.jhydrol.2006.02.031
Calahorrano, J., Manzano, M., Gualli, D., Silva, F., Audelo, M., & Tingo, J. (2017). Análisis de tendencia en la precipitación anual (1964–2011) en la cuenca del Pastaza-Ecuador. Aqua-LAC, 9(2), 73–84. https://doi.org/10.29104/phi-aqualac/2017-v9-2-06
Campos-Aranda, D. F. (2019). Non-stationary frequency analysis by linear regression and LN31, LP31 y GVE1 distributions. Tecnología y Ciencias del Agua, 10(6), 57–89. https://doi.org/10.24850/j-tyca-2019-06-03
Chen, Y., Liu, H., An, J., Görsdorf, U., & Berger, F. H. (2015). A field experiment on the small-scale variability of rainfall based on a network of micro rain radars and rain gauges. Journal of Applied Meteorology and Climatology, 54(1), 243–255. https://doi.org/10.1175/JAMC-D-13-0210.1
Jiménez, E., Murillo, A., & Delgado, D. (2024). Análisis comparativo de bases de datos de precipitaciones para la provincia de Manabí. Revista Científica Arbitrada Multidisciplinaria PENTACIENCIAS, 6(1), 273–287. https://doi.org/10.59169/pentaciencias.v6i1.957
López, N., Márquez, A. M., & Guevara, E. (2021). Predicción espacio-temporal del balance hídrico en la cuenca del río Urama, Venezuela. DYNA, 88(217), 58–67. https://doi.org/10.15446/dyna.v88n217.88222
Luna-Romero, A. E., Ramírez Morales, I., Sánchez Mendieta, C., Conde Solano, J., Agurto Rodríguez, L., & Villaseñor Ortiz, D. (2018). Distribución espacio-temporal de la precipitación en la cuenca del río Jubones, Ecuador: 1975–2013. Scientia Agropecuaria, 9(1), 63–70. http://www.scielo.org.pe/pdf/agro/v9n1/a07v9n1.pdf
Márquez, A. M., Guevara Pérez, E., Pérez Pacheco, S. A., & Buroz Castillo, E. (2022). Spatio-temporal prediction of water production in basins without records. DYNA, 89(220), 110–120. https://www.redalyc.org/journal/496/49672695012/html/
Matovelle, C., Andreo, B., & Mudarra, M. (2021). Análisis de la influencia de la altitud en los eventos de máxima precipitación en una cuenca del Pacífico: tendencias y variabilidad. Información Tecnológica, 32(6), 3–12. https://www.scielo.cl/pdf/infotec/v32n6/0718-0764-infotec-32-06-3.pdf
Méndez González, J., Návar Cháidez, J. D. J., & González Ontiveros, V. (2008). Análisis de tendencias de precipitación (1920–2004) en México. Investigaciones Geográficas, (65), 38–55. https://www.scielo.org.mx/pdf/igeo/n65/n65a4.pdf
Montilla-Pacheco, A., Mora-Pisco, C. I., Durán-Vasco, M. E., & Pastrán-Calles, F. R. (2024). Contribución al estudio de la geografía climática del Ecuador continental. Ciencia UNEMI, 17(44), 237–248. https://ojs.unemi.edu.ec/index.php/cienciaunemi/article/view/1758/1778
Nieto Melgarejo, H. (2007). Comparación de modelos hidrológicos precipitación-escorrentía determinísticos conceptuales con y sin uso de modelo estocástico [Tesis de maestría, Universidad Nacional de Ingeniería].
Paliz, C., Perugachi, N., Martínez, J., Moreno, M., Yaucán, C., & Palaguachi, R. (2021). Análisis estadístico de datos de las precipitaciones usando métodos robustos: caso Riobamba. Revista de la Facultad de Ingeniería en Geología, Minas, Petróleos y Ambiental, 42(2), 52–63. https://doi.org/10.29166/revfig.v12i2.3515
Pérez-Ortiz, M. A., Montenegro-Murillo, D. D., & Vargas-Franco, V. (2022). Analysis of the influence of climatic variability on precipitation in the Cali River basin, Colombia. DYNA, 89(221), 168–177. http://www.scielo.org.co/pdf/dyna/v89n221/2346-2183-dyna-89-221-168.pdf
Quishpe-Vásquez, C., Gámiz-Fortis, S. R., García-Valdecasas-Ojeda, M., Castro-Díez, Y., & Esteban-Parra, M. J. (2024). Tropical Pacific SST influence on seasonal streamflow variability in Ecuador. arXiv. https://arxiv.org/abs/2401.09799
Solera-Ramírez, Á. (2003). Filtro de Kalman. Banco Central de Costa Rica. https://repositorioinvestigaciones.bccr.fi.cr/server/api/core/bitstreams/ffe1154c-ee5e-4133-8fc0-96858a3c7ba5/content
Villegas, O. C., Muro-Pérez, G., Jurado, E., Flores, J., Castañeda-Gaytan, J. G., Aguirre, O., & Sánchez, J. (2021). Trends of climate change at the mid-low Nazas-Agua naval inland basin based on a geographical approach. Ecosistemas y Recursos Agropecuarios, 8(3), 1–10. https://doi.org/10.19136/era.a8n3.2704
Vuille, M., Bradley, R. S., & Keimig, F. (2000). Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. Journal of Geophysical Research: Atmospheres, 105(D10), 12447–12460. https://doi.org/10.1029/2000JD900134
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Dayana Norely Rodríguez-Granda, Kleber Alexander Cruz-Lovato, Ángel Eduardo Luna-Romero (Autor/a)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish in Revista Metropolitana de Ciencias Aplicadas (REMCA), agree to the following terms:
1. Copyright
Authors retain unrestricted copyright to their work. Authors grant the journal the right of first publication. To this end, they assign the journal non-exclusive exploitation rights (reproduction, distribution, public communication, and transformation). Authors may enter into additional agreements for the non-exclusive distribution of the version of the work published in the journal, provided that acknowledgment of its initial publication in this journal is given.
© The authors.
2. License
The articles are published in the journal under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0). The terms can be found at: https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
This license allows:
- Sharing: Copying and redistributing the material in any medium or format.
- Adapting: Remixing, transforming, and building upon the material.
Under the following terms:
- Attribution: You must give appropriate credit, provide a link to the license, and indicate if any changes were made. You may do this in any reasonable manner, but not in any way that suggests the licensor endorses or sponsors your use.
- NonCommercial: You may not use the material for commercial purposes.
- ShareAlike: If you remix, transform, or build upon the material, you must distribute your creation under the same license as the original work.
There are no additional restrictions. You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.