Trichoderma asperellum: persistence in the soil under different application methods in banana cultivation

Authors

DOI:

https://doi.org/10.62452/bj7q9284

Keywords:

Carbon, microbiota, suppressive soil, biocontrol

Abstract

Persistence after soil application of Trichoderma asperellum is a determining factor for its efficacy as a biocontrol and biostimulant agent in sustainable agricultural production systems. This study evaluated the persistence of Trichoderma asperellum in the rhizosphere of banana crops after six consecutive monthly applications with 5 treatments and a control: T0 (absolute control), T1 (powder inoculum), T2 (powder inoculum with SLL technology), T3 (powder inoculum + biochar), T4 (inoculum diluted in water), and T5 (inoculum with amino acids). The variables evaluated were the percentage of Trichoderma asperellum colonies persistence every 30 days, the weight of live, diseased, dead, and total roots, plant-parasitic nematode populations, and bunch weight. The results indicated that treatment T2 promoted greater fungal persistence, with greater rhizospheric colonization, a significant increase in healthy root mass, a decrease in diseased/dead roots, and notable reductions in plant pathogenic nematode populations, especially R. similis. A significant improvement in productivity was also observed. These results suggest that the SLL technology formulation improves inoculant persistence in the soil, enhancing the beneficial effects of Trichoderma asperellum on soil health and banana crop yield.

Downloads

Download data is not yet available.

References

Abdullah, N. S., Doni, F., Mispan, M. S., Saiman, M. Z., Yusuf, Y. M., Oke, M. A., & Suhaimi, N. S. M. (2021). Harnessing Trichoderma in agriculture for productivity and sustainability. Agronomy, 11(12), 2559. https://doi.org/10.3390/agronomy11122559

Andrade-Hoyos, P., Rivera-Jiménez, M. N., Landero-Valenzuela, N., Silva-Rojas, H. V., Martínez-Salgado, S. J., & Romero-Arenas, O. (2023). Beneficios ecológicos y biológicos del hongo cosmopolita Trichoderma asperellum en la agricultura: Una perspectiva en el campo mexicano. Revista Argentina de Microbiología, 55(4), 366–377. https://doi.org/10.1016/j.ram.2023.06.005

Asghar, W., Craven, K. D., Kataoka, R., Mahmood, A., Asghar, N., Raza, T., & Iftikhar, F. (2024). The application of Trichoderma asperellum, an old but new useful fungus, in sustainable soil health intensification: A comprehensive strategy for addressing challenges. Plant Stress, 12, 100455. https://doi.org/10.1016/j.stress.2024.100455

Calvo, J. (2021). Suelos supresivos y su papel en el manejo de enfermedades. Environment & Technology, 2(1), 48–63. https://doi.org/10.56205/ret.2-1.3

Cruz-Cárdenas, C., Zelaya, L., Sandoval, G., De Los Santos-Villalobos, S., Rojas, E., Chávez, I., & Ruíz, S. (2021). Utilización de microorganismos para una agricultura sostenible en México: Consideraciones y retos. Revista Mexicana de Ciencias Agrícolas, 12(5), 899–913. https://doi.org/10.29312/remexca.v12i5.2905

Ferreira, F. V., & Musumeci, M. A. (2021). Trichoderma as biological control agent: Scope and prospects to improve efficacy. World Journal of Microbiology and Biotechnology, 37(5). https://doi.org/10.1007/s11274-021-03058-7

Gallegos-Morales, G., Espinoza-Ahumada, C. A., Figueroa-Reyes, J., Méndez-Aguilar, R., Rodríguez-Guerra, R., Salas-Gómez, A. L., & Peña-Ramos, F. M. (2022). Compatibilidad de especies de Trichoderma en la producción y biocontrol de marchitez del chile. Ecosistemas y Recursos Agropecuarios, 9(2). https://doi.org/10.19136/era.a9n2.3066

Huang, W., Ji, H., Gheysen, G., Debode, J., & Kyndt, T. (2015). Biochar-amended potting medium reduces the susceptibility of rice to root-knot nematode infections. BMC Plant Biology, 15(1). https://doi.org/10.1186/s12870-015-0654-7

Lugo, F. (2021). Análisis multitemporal para determinar la expansión urbana en el municipio de Soacha Cundinamarca en el periodo 2015 [Trabajo de Especialización, Universidad Militar Nueva Granada].

Rodrigues, C., Bilesky-José, N., De Lima, R., & Fernandez, L. (2020). Encapsulation of Trichoderma harzianum preserves enzymatic activity and enhances the potential for biological control. Frontiers in Bioengineering and Biotechnology, 8, 225. https://doi.org/10.3389/fbioe.2020.00225

Vargas, R. (2016). Muestreo de raíces para análisis de nematodos en banano (Musa AAA). Corbana, 16. https://www.corbana.co.cr/wp-content/uploads/HD-n.%C2%B0-8-2016-Muestreo-ra%C3%ADces.pdf

Velasquez, G. (2024). Uso de microorganismos eficientes y su impacto térmico en el compostaje de residuos orgánicos. Sciencevolution, 4(12), 100–106. https://doi.org/10.61325/ser.v4i12.131

Vindas-Reyes, E., Chacón-Cerdas, R., & Rivera-Méndez, W. (2024). Trichoderma production and encapsulation methods for agricultural applications. AgriEngineering, 6(3), 2366–2384. https://doi.org/10.3390/agriengineering6030138

Yao, X., Guo, H., Zhang, K., Zhao, M., Ruan, J., & Chen, J. (2023). Trichoderma and its role in biological control of plant fungal and nematode disease. Frontiers in Microbiology, 14, 1160551. https://doi.org/10.3389/fmicb.2023.1160551

Downloads

Published

2025-09-20

How to Cite

Tuz-Guncay, I. G. ., Simbaña-Villarreal, A. ., Quevedo-Guerrero, J. N. ., & Vera-Cruz, E. F. (2025). Trichoderma asperellum: persistence in the soil under different application methods in banana cultivation. Revista Metropolitana De Ciencias Aplicadas, 8(4), 77-86. https://doi.org/10.62452/bj7q9284