Rendimiento de larvas de moscas en varias cosechas con tres proporciones de salvado de trigo y gallinaza

Enrique Casanovas-Cosío, Reina Reyna-Reyes, Nelson Valladares-Enriquez, Alexis Suárez del Villar-Labastida, Ana Álvarez-Sánchez

Resumen


Con el objetivo de comparar los rendimientos de larvas de moscas en varias cosechas en un diseño de bloques al azar con tres tratamientos: A- salvado de trigo 100 %; B- salvado de trigo 50% y gallinaza 50 %; C- 100% gallinaza en magentas a tres centímetros de altura de los sustratos, con cinco réplicas, se realizaron además las siguientes mediciones: temperatura de los sustratos, temperatura y humedad relativa ambiente dentro del moscario, cada 24 horas. . La temperatura en los sustratos se comportó entre los 22,88 oC y 36,08 oC, siempre por encima de la temperatura ambiental en el moscario, y humedad relativa entre 44 y 68 %. Se utilizó 32,91; 30,29 y 32,19 L de agua por metro cuadrado para los tratamientos A, B y C, respectivamente. El mayor rendimiento de larvas se obtuvo en la primera cosecha a los seis días para el tratamiento B con 2290,59 g m2-1 y 112,07 g kg 2-1. La transformación de la proteína bruta de los sustratos por las larvas de moscas estuvo entre 28,0 y 37,0 %.No se observó presencia de agentes patógenos (Salmonella spp., Escherichia coli, y Coccidia) en los tratamientos, ni en las larvas cosechadas.

Palabras clave:

Agua, insectos, proteína alternativa, residuos orgánicos, sustratos.

 

Abstract

The aim of the research was to compare the yields of house fly larvae using different proportions of wheat bran and hens feces as larval development medium, in a randomized block experimental design with five replications in propylene containers with 3 cm of depth of substrates: A-100 % wheat bran; B- 50% wheat bran and 50% hens feces; C- 100% hens feces. Measurements of the temperature of the substrates, as well as the temperature and relative humidity of the place where the flies were developing were made every 24 hours. The larval yield per m2 and kg of substrate, (including the water used to moisten the larval media) were also registered. The temperature in the substrates ranged between 22.88 oC and 36.08 oC, always above the ambient temperature in the fly house, and relative humidity between 44 and 68%. Was used 32.91, 30.29 and 32.19 L of water per square meter for treatments A, B and C, respectively. The highest larval yield was obtained in the first harvest after six days for treatment B with 2290.59 g m2-1 y 112.07 g kg2-1. The transformation of the crude protein of the substrates by the fly larvae was between 28.0 and 37.0%. No presence of pathogenic agents (Salmonella spp., Escherichia coli, and Coccidia) was observed in the treatments, nor in the harvested larvae.

Keywords:

Water, insects, alternative protein, organic residues, substrates.


Texto completo:

PDF

Referencias


Argentina. Comisión Nacional de Sanidad Avícola. (2018). Guía de buenas prácticas: Control de plagas en establecimientos avícolas. http://WWW.senasa.gob.ar/sites/defaut/files/ARBOL_SENASA/ANIMAL/AVES/PROD_PRIMARIA/SANIDAD_ANIMAL/MANUALES/2018/manual_plagas.pdf

Association of Official Analytical Chemists. (2005). Animal Feed AOAC / Official Methods of AOAC International. https://law.resource.org/pub/us/cfr/ibr/002/aoac.methods.1.1990.pdf

Barnard, D., & Geden, C. (1993). Influence of larval density and temperature en poultry manure on development of the house fly (Diptera: Muscidae). Environmental Entomology, (22)5, 971-977.

Beniers, J., & Graham, J. (2019). Effect of protein and carbohydrate feed concentrations on the growth and composition of black soldier fly (Hermetia illucens) larvae. Journal of Insects as Food and Feed, 5(3), 193 – 199.

Beskin, K., Holcomd, C., CammacK, J., Crippen, T., Knap, A., Sweet, S., & Tomberlin, J. (2018). Larval digestion of different manure types by the black soldier fly (Diptera: Stratiomyidae) impacts associate volatile emissions. Waste Management, 74, 213-220.

Casanovas, E., Perales, D., Suárez, A., Medina, D., & Hernández, R. (2020). Producción de larvas de mosca doméstica Musca domestica L. en diferentes sustratos. International Journal of Innovation and Scientific Research, 51(1), 1-8.

Casanovas, E., Suárez del Villar, A., Álvarez, A., & Reyes, R. (2021). Rendimiento de larvas de moscas (Musca domestica L.) con diferentes proporciones de germen de maíz y heces fecales porcinas. Revista Científica Agroecosistemas, 9(2), 13-18.

Cheng, Z., Yu, L., Li, H., Xu, X., & Yang, Z. (2021). Use of housefly (Musca domestica L.) larvae o bioconversion food waster for animal nutrition and organic fertilizer. Environment Science. Pollution, 28, 48921- 48928.

Cicková, H, Newton, G., Lacy, R., & Kozánek, M. (2015). The use of fly larvae for organic waste treatment. Waste Management, 35, 68-80.

Cruz, S., Chim, M., LOebmann, D., Reis J., & García, A. (2002). Influência da Temperatura e do Tipo de Substrato na Produção de Larvas de Musca domestica Linnaeus, 1758 (Diptera, Muscidae). Revista Brasileira Zootecnia, 31(5),1886-1889.

Feldmeyer, B., Kozielska, M., B, K., F, W., Beukeboom, L., & Pen, I. (2008). Climatic variation and the geographical distribution of sex-determining mechanisms in the houses fly. Evolutionary Ecology Research, 10(6), 797-809.

Florez, M., Berkebile, D., Brewer, G., & Taylor D. (2019). Effects of temperature and diet in stable fly (Diptera: Muscidae) development. Insects, 10(207), 2-13 .

Foley J.A., Ramankutty N., Brauman K.A., Cassidy E.S., Gerber J.S., Johnston M., Mueller N.D., O’Connell C., Ray D.K., & West P.C. (2011). Solutions for a cultivated planet. Nature, 478: 337-342.

Gadzama I. U., & Ndudim R. K. (2019).Nutritional Composition of Housefly Larvae Meal: A Sustainable Protein Source for Animal Production – A Review . Acta Scientific Agriculture 3 (4), 74-77.

Gafar, A., Sankara, F., Pousga, S., Coulibaly, K., Nacoulma, J., Ouedraogo, I., Nacro, S., Kenis, M., Sanon, A., & Somda, I. (2019). Production de masse de larves de Musca domestica L. (Diptera: Muscidae) pour l’aviculture au Burkina Faso: Analyse des facteurs déterminants en oviposition naturelle. Journal of Applied Biosciences, 134.

Hussein, M., Pillai, V., Goddard, J., Park, H., Kothapalli, K., Ross, D., Ketterings, Q., Brenna, J., Milstein, M., & Marquis, H. (2017). Sustainable production of housefly (Musca domestica) larvae as a protein-rich feed ingredient by utilizing cattle manure. Plos One, 12(2) , 1-19.

Instituto de Meteorología de Cienfuegos. (2021). Datos meteorológicos mes de octubre 2021. En formato digital. INSMET.

Koné, N., Sylla, M., Nacambo, S., & Kenis, M. (2017). Production of house fly larvae for animal feed through natural oviposition. Journal of Insects as Food and Feed, 3(3), 177-186

Lähteenmäki-Uutela, A., Marimuthu, S., & Meijer, N. (2021). Regulations on insects as food and feed: a global comparison. Journal of Insects as Food and Feed, 7(5), 849-856.

Makkar, H., Tran, G., Heuzé, V., & Ankers, P. (2014). State of the art on use of insects as animal feed. Animal Feed Science and Technology, 197, 1-33

Martínez, A., Arriola, L., & Sahagún, A. (2015). Inhibición de la formación de pupas de Musca domestica L. por Beauveria bassiana (Balsamo) Vuillemin nativa del estado de Guanajuato. Jóvenes en la Ciencia, 1,(2), 29-32.

Miranda, C., Cammack, J., & Tomberlin, J. (2020). Life-history traits of house fly, Musca domestica L. (Diptera: Muscidae), reared on thee manure types. Journal of insects as Food and Feed, 6(1), 81-90.

Ossey, Y., Koumi, A., Koffi, K., Atse, B., & Kouame, L. (2012). Use of soybean, bovine brain and maggot as sources of dietary protein in larval Heterobranchus longifilis (Valenciennes, 1840). Journal of Animal and Plant Sciences, 15(1), 2099-2108.

Pastor, B., Velasquez, Y., Gobbi, P., & Rojo, S. (2015). Conversion of organic wastes into fly larval biomass: bottlenecks and challenges. Journal of Insects as Food and Feed, 1(3), 179-193.

Pieterse, E., & Pretorius, Q. (2013). Nutritional evaluation of dried larvae and pupae meal of the housefly (Musca domestica) using chemical-and broiler-based biological assays. Animal Production Science (54), 347-355.

Pino, M. (2018). Por qué todavía no comemos insectos: marco legal en la Unión Europea. Revista de Bioética y Derecho, (42), 311-341.

PROteINSECT. (2016). Insects as Sustainable Sources of Protein. https://www.proteinsect.eu/fileadmin/user_upload/press/proteinsect-whitepaper-2016-final.pdf

Rubio, B. (2015). Crisis de hegemonía y transición capitalista en el ámbito agroalimentario mundial. Espacio abierto, 24(2), 235-254.

Sanou, A., Sankara, F., Pousga, S., Coulibaly, K., Nacoulma, J., Ouedraogo, I., Nacro, S., Kenis, M., Sanon, A., & Sonda, I. (2019). Production de masse de larves de Musca domestica L. (Diptera: Muscidae) pour l’aviculture au Burkina Faso: Analyse des facteurs déterminants en oviposition naturelle. Journal of Applied Biosciences, 134, 13689 – 13701.

Sequeira, R., Millar, L., & Bartels, D. (2001). Identification of Susceptible Areas for the Establishment of Anastrepha spp. Fruit Flies in the United States and Analysis of Selected Pathways. Raleigh. NC USDA-APHISPPQ Center Plant Health Science Technology, (47), 21,1-47.

Van Huis, A. (2015). Edible insects contributing to food security? Agriculture and Food Security, 4(20), 2-9.

Wang, H., Zhang, Z., Czapar, G., Winkler, M., & Zheng, J. (2013). A full-scale house fly (Diptera: Muscidae) larvae bioconversion system for value-added swine manure reduction. Waste Management and Research, 31(2), 223-231.


Enlaces refback

  • No hay ningún enlace refback.


Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

ISSN on line: 2631-2662

ISSN impreso: 2661-6521