Application of Benford's Law to detect fraud in university satisfaction surveys

Authors

DOI:

https://doi.org/10.62452/qx9wgp76

Keywords:

University satisfaction surveys, Benford's Law, fraud

Abstract

This study applies Benford's Law to analyze the possible existence of fraud in the responses to a satisfaction survey conducted with 54 students from the Universidad Iberoamericana del Ecuador, Quito, in the Health area. A questionnaire of 12 questions was applied with answers on a Likert scale from 1 to 5. The results of the Chi-square test do not show significant evidence of fraud, suggesting that the answers align with the expected distribution of Benford's Law. It means that the students answered the questionnaire and the answers were not manipulated by another person, which gives the truthfulness of the answers.

Downloads

Download data is not yet available.

References

Agresti, A. (2007). An Introduction to Categorical Data Analysis (2nd ed.). John Wiley & Sons.

Benford, F. (1938). The Law of Anomalous Numbers. Proceedings of the American Philosophical Society, 78(4), 551-572. https://www.jstor.org/stable/984802

Bhattacherjee, A. (2012). Social Science Research: Principles, Methods, and Practices (2nd ed.). University of South Florida.

Bollen, K. A. (1989). Structural Equations with Latent Variables. John Wiley & Sons.

Cantu, F., & Saiegh, S. (2011). Fraudulent Democracy? An Analysis of Argentina's Infamous Decade Using a Regression Discontinuity Design. The Journal of Politics, 73(3), 876-891. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ec2949c125494a4a4dc4ac37f3c91235a3bdd2cf

Creswell, J. W. (2014). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (4th ed.). SAGE Publications.

Cruz-Colín, L. Q., Cáceres-Mesa, M. L., Veytia-Bucheli, M. G., & Hernández-Márquez, J. (2024). Cultura de evaluación en prácticas institucionales de acreditación de programas educativos. Sophia Editions.

Durtschi, C., Hillison, W., & Pacini, C. (2004). The Effective Use of Benford's Law to Assist in Detecting Fraud in Accounting Data. Journal of Forensic Accounting, 5, 17-34. https://ruby.fgcu.edu/courses/cpacini/courses/common/BenfordsLaw.pdf

Kou, Y., Lu, C. T., Sirwongwattana, S., & Huang, Y. P. (2014). Survey of Fraud Detection Techniques. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 29(2), 94-110. https://ntut.elsevierpure.com/en/publications/survey-of-fraud-detection-techniques

Newcomb, S. (1881). Note on the Frequency of Use of the Different Digits in Natural Numbers. American Journal of Mathematics, 4(1), 39-40. https://pdodds.w3.uvm.edu/files/papers/others/1881/newcomb1881a.pdf

Nigrini, M. J. (2012). Benford's Law: Applications for Forensic Accounting, Auditing, and Fraud Detection. John Wiley & Sons.

Pericchi, L. R., & Torres, D. (2011). Quick Anomaly Detection by the Newcomb-Benford Law, with Applications to Electoral Processes Data from the USA, Puerto Rico and Venezuela. Statistical Science, 26(4), 502-516. https://www.jstor.org/stable/23208738

Siegel, S., & Castellan, N. J. (1988). Nonparametric Statistics for the Behavioral Sciences (2nd ed.). McGraw-Hill.

Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach's alpha. International Journal of Medical Education, 2, 53-55. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4205511/

Varian, H. R. (2020). Economic Scenes: Analyzing Online Surveys with Benford’s Law. American Economic Review, 110(5), 1384-1407.

Downloads

Published

2025-01-19

How to Cite

Cabeza-García, P. M. . (2025). Application of Benford’s Law to detect fraud in university satisfaction surveys. Revista Metropolitana De Ciencias Aplicadas, 8(1), 35-41. https://doi.org/10.62452/qx9wgp76