Enmiendas edáficas de biocarbones y SiO2 en plantas de banano con manejo de agricultura orgánica

Darwin Alfredo Rocafuerte Vélez, Salomón Barrezueta Unda, Edison Jaramillo Aguilar

Resumen


El objetivo de la investigación fue evaluar el efecto de diferentes dosis de biocarbón (BC) obtenido a partir de cáscara de mazorca de cacao (BCC) y tallo de banano (BCB) en combinación con varios abonos orgánicos en el desarrollo de plantas sucesión. Para determinar los efectos se estableció un diseño completamente al azar, conformado por los tratamientos T1 (15 g de BCC), T2 (30 g de BCC), T3 (30 g de BCB), T4 (30 g de BCB) en mezcla con 100 g de SiO2 y 500 ml de biol. Los tratamientos T5 y T6 se conformaron por 60 g BCC y 60 g BCB + 50 ml de Trichoderma spp., y 50 ml de biol (T5) y el tratamiento T7 conformó por 100 g de SiO2. En todos los tratamientos con BC se logró el incremento del pH del suelo, pero solo en T1 se alcanzó un valor >pH 6. La altura de las plantas y el grosor del pseudotallo al final del experimento fueron muy homogéneos en los tratamientos con biocarbón y superiores a los obtenidos en el tratamiento control. El efecto de los biocarbones en el número de hojas al final del experimento varió de 9 a 11 hojas, resultado favorable para obtener un racimo óptimo para la exportación.

Palabras clave:

Enmienda orgánica, agricultura orgánica, carbón vegetal, banano.

 

ABSTRACT

The aim of the research was to evaluate the effect of different doses of biochar (BC) obtained from cocoa pod husk (BCC) and banana stalk (BCB) in association with several organic manures on growth of succession plants. To determine the effects, it was established a completely randomized design, composed of treatments T1 (15 g of BCC), T2 (30 g of BCC), T3 (30 g of BCB), T4 (30 g of BCB) in mixture with 100 g of SiO2 and 500 ml of biol. Treatments T5 and T6 consisted of 60 g BCC and 60 g BCB + 50 ml of Trichoderma spp. and 50 ml of biol (T5) and treatment T7 consisted of 100 g of SiO2. In all treatments with BC the increase of soil pH was achieved but only in T1 a value >pH 6 was reached. Plant height and pseudostem thickness at the end of the experiment were very homogeneous in the biochar treatments and higher than those obtained in the control treatment. The effect of biochar on the number of leaves at the end of the experiment ranged from 9 to 11 leaves, a favorable result for obtaining an optimal bunch for export.

Keywords:

Organic amendment, organic agriculture, biochar, banana.


Texto completo:

PDF

Referencias


Azuero-Gaona, B., Quevedo-Guerrero, J., & García-Batista, M. (2020). Efecto del biocarbón y microorganismos en la producción y estado fitosanitario de banano orgánico en la parroquia “La Victoria”. Revista Científica Agroecosistemas, 8(2), 110–120.

Barrezueta-Unda, S., Condoy Gorotiza, A., & Sánchez Pilcorema, S. (2022). Efecto del biocarbón en el desarrollo de las plantas de banano (Musa AAA) en fincas a partir de un manejo orgánico y convencional. Enfoque UTE, 13(3), 29-44.

Barrezueta-Unda, S., & Sisalima-Morales, P. (2021). Efectos de biochar en el desarrollo vegetativo de Theobroma cacao L. Revista Científica Agroecosistemas, 9(2), 86–91.

Bustamante León, M., Chabla Carrillo, J., & Barrezueta Unda, S. (2018). La densidad y humedad crítica como indicadores de la compactación de suelos cultivados con banano. Agroecosistemas, 6(1), 168–174.

Cuenca-Rivera, J., Quevedo-Guerrero, J., & García-Batista, R. (2019). Evaluación de la mineralización de biochar sobre parámetros químicos del suelo en dos tiempos de incubación. Revista Científica Agroecosistemas, 7(3), 6–11.

Cui, X., Fang, S., Yao, Y., Li, T., Ni, Q., Yang, X., & He, Z. (2016). Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar. The Science of the Total Environment, 562, 517–525.

Ferry, Y., Herman, M., Tarigan, E. B., & Pranowo, D. (2022). Improvements of soil quality and cocoa productivity with agricultural waste biochar. IOP Conference Series: Earth and Environmental Science, 974(1).

Fuentes Hernández, A., & Recio Recio, R. (2005). Propuesta de diseño de un horno–reactor para realizar la pirólisis de la cáscara de arroz. Tecnología Química, 25(2), 87–98.

Jindo, K., Sánchez-Monedero, M. A., Mastrolonardo, G., Audette, Y., Higashikawa, F. S., Silva, C. A., Akashi, K., & Mondini, C. (2020). Role of biochar in promoting circular economy in the agriculture sector. Part 2: A review of the biochar roles in growing media, composting and as soil amendment. Chemical and Biological Technologies in Agriculture, 7(1), 1-10.

Magdama, F., Monserrate-Maggi, L., Serrano, L., García Onofre, J., & Jiménez-Gasco, M. D. M. (2020). Genetic Diversity of Fusarium oxysporum f. sp. cubense, the Fusarium Wilt Pathogen of Banana, in Ecuador. Plants, 9(9).

Marín-Armijos, J., García-Batista, R., & Barrezueta-Unda, S. (2018). Elaboración de biocarbón obtenido a partir de la cáscara del cacao y raquis del banano. Revista Científica Agroecosistemas, 6(3), 75–81.

Meyer, R. S., Cullen, B. R., Whetton, P. H., Robertson, F. A., & Eckard, R. J. (2018). Potential impacts of climate change on soil organic carbon and productivity in pastures of south eastern Australia. Agricultural Systems, 167, 34–46.

Panigrahi, N., Thompson, A. J., Zubelzu, S., & Knox, J. W. (2021). Identifying opportunities to improve management of water stress in banana production. Scientia Horticulturae, 276, 109735.

Pérez-Cabrera, C. A., Juárez-López, P., Anzaldo-Hernández, J., Alia-Tejacal, I., Valdez-Aguilar, L. A., Alejo-Santiago, G., Castro-Brindis, R., López-Martínez, V., & Alvarado-Camarillo, D. (2022). Biocarbón de ápices de caña de azúcar como enmienda de suelo para el cultivo de Ocimum basilicum var. thyrsiflora en invernadero. Terra Latinoamericana, 40.

Puentes-Escobar, T. C., & Rodríguez Carlosama, A. (2021). Impacto del biocarbón en el suelo agrícola. Revista Avances: Investigación en Ingeniería, 18(2).

Quevedo-Guerrero, J., Delgado-Pontón, A., & Tuz-Guncay, I. (2019). Evaluación de la aplicación de fertilizante al pseudotallo de plantas cosechadas de banano (Musa x paradisiaca L.) y su efecto en la velocidad de crecimiento. Revista Científica Agroecosistemas, 7(2), 190–197.

Sial, T. A., Khan, M. N., Lan, Z., Kumbhar, F., Ying, Z., Zhang, J., Sun, D., & Li, X. (2019). Contrasting effects of banana peels waste and its biochar on greenhouse gas emissions and soil biochemical properties. Process Safety and Environmental Protection, 122, 366–377.

Tenesaca-Martínez, S., Quevedo-Guerrero, J., & García-Batista, R. (2019). Determinación de la dosis óptima de biocarbón como enmienda edáfica en el cultivo de banano (musa x paradisiaca l.) clon Williams. Revista Científica Agroecosistemas, 7(3), 134–141.

Tian, G.-L., Bi, Y.-M., Jiao, X.-L., Zhang, X.-M., Li, J.-F., Niu, F.-B., & Gao, W.-W. (2021). Application of vermicompost and biochar suppresses Fusarium root rot of replanted American ginseng. Applied Microbiology and Biotechnology, 105(18), 6977–6991.

Vásquez-Castillo, W., Racines-Oliva, M., Moncayo, P., Viera, W., & Seraquive, M. (2019). Calidad del fruto y pérdidas poscosecha de banano orgánico Musa acuminata en el Ecuador. Enfoque UTE, 10(4), 57–66.

Villaseñor, D., Prado, R., Pereira da Silva, G., Carrillo, M., & Durango, W. (2020). DRIS norms and limiting nutrients in banana cultivation in the South of Ecuador. Journal of Plant Nutrition, 43(18), 2785–2796.

Yong, S. K., Leyom, J., Tay, C. C., & Talib, S. A. (2018). Sorption of lead from aqueous system using cocoa pod husk biochar: Kinetic and isotherm studies. International Journal of Engineering & Technology, 7(3.11), 241-244.


Enlaces refback

  • No hay ningún enlace refback.


Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

ISSN on line: 2631-2662

ISSN impreso: 2661-6521