Uso de biocarbones en medios de cultivo para el crecimiento de Trichoderma spp. in vitro

Stalin Sánchez Pilcorema, Alexander Condoy Gorotiza, Priscila Sisalima Morales, Salomón Barrezueta Unda, Edison Jaramillo Aguilar

Resumen


Para alcanzar una agricultura sostenible es necesario investigar los diferentes mecanismos de control natural, como el uso de microorganismo eficientes (Trichoderma sp) y de biocarbones, que en conjunto pueden generar una sinergia que beneficien al suelo y por tanto a los cultivos. Por tanto, los objetivos de la investigación fueron: Evaluar el crecimiento de Trichoderma sp., sobre medios de cultivo formulados con biocarbón de banano y biocarbon de cacao en laboratorio en diferentes concentraciones. El ensayo se conformó en 3 dosis de biocarbones (1,2 g;3,5 g; 7,5 g) obtenidos por pirolisis de los residuos de raquis de banano y de la cascara del cacao. En laboratorio se prepara el medio de cultivo en PDA para reproducir Trichoderma sp., a una concentración de 10*1011 UFC que luego fue tomada una porción para ser colocada en cajas de Petri con la dosis de biocarbones. Los resultados fueron medidos a intervalos de 7 días. El tratamiento de 3,75 gr de biocarbón de cacao fue el de mayor crecimiento su fluctuación fue de 5 a 8,5 cm en 21 días desde la siembra. Para el medio con el biocarbon de banano no se portó crecimiento de Trichoderma sp.

Palabras clave:

Microorganismos eficientes, agricultura sustentable, sinergismo, unidades formadoras de colonias.

 

ABSTRACT

Research into different natural control mechanisms, such as the use of efficient micro-organisms (Trichoderma sp) and bio-coals, is necessary to achieve sustainable agriculture, which together can generate a synergy that benefits the soil and therefore the crops. Therefore, the objectives of the research were: To evaluate the growth of Trichoderma sp., on culture media formulated with banana biochar and cocoa biochar in the laboratory in different concentrations. The test was made up of 3 doses of biochar (1.2 g; 3.5 g; 7.5 g) obtained by pyrolysis of banana rachis residues and cocoa shells. In the laboratory, the culture medium is prepared in PDA to reproduce Trichoderma sp. at a concentration of 10*1011 UFC, which was then taken a portion to be placed in Petri dishes with the dose of biochar. The results were measured at 7-day intervals. The treatment of 3.75 gr of biocoal of cocoa was the one of greater growth its fluctuation was of 5 to 8.5 cm in 21 days from the sowing. For the medium with banana biocarbon there was no growth of Trichoderma sp

Keywords:

Efficient microorganism, sustainable agriculture, synergy, colony-forming units.


Texto completo:

PDF

Referencias


Barrow, C. J. (2012). Biochar: Potential for countering land degradation and for improving agriculture. Applied Geography, 34, 21–28.

Dignac, M. F., Derrien, D., Barre, P., Barot Sébastien, C. L., Chenu, C., Chevallier, T., Freschet, G. T., Garnier, P., Guenet, B., Hedde, M., Klumpp, K., Lashermes, G., Maron, P. A., Nunan, N., Roumet, C., & Basile-Doelsch, I. (2017). Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agronomy for Sustainable Development, 37(2), 7–27.

Elad, Y., Cytryn, E., Meller Harel, Y., Lew, B., & Graber, E. R. (2011). The biochar effect: Plant resistance to biotic stresses. Phytopathologia Mediterranea, 50(3), 335–349.

Ellerbrock, R., & Kaiser, M. (2005). Stability and composition of different soluble soil organic matter fractions – evidence from d 13 C and FTIR signatures. Geoder, 128, 28–37.

Escalante, A., Pérez, G., Hidalgo, C., López, J., Campo, J., Valtierra, E., … Etchevers, J. (2016). Biocarbón (biochar) I: Naturaleza, historia, fabricación y uso en el suelo Biocarbon (biochar) I: Nature, history, manufacture and use in soil. Terra Latinoamericana, 34, 367–382.

Herrera, E., Feijoo, C., Alfaro, R., Solís, J., Gómez, M., Keiski, R., & Cruz, G. (2018). Biochar based on residual biomasses and its influence over seedling emergence and growth in vivarium of Capparis scabrida (Sapote). Scientia Agropecuaria, 9(4), 569–577.

Howell, C. R. (2003). Mechanisms Employed by Trichoderma Species in the Biological Control of Plant Diseases: The History and Evolution of Current Concepts. Plant Disease, 87(1), 4–10.

Jaramillo, E., Barrezueta-Unda, S., Luna, E., & Castillo, S. (2017). In vitro evaluation of the Aloe vera gel on Mycosphaerella fijiensis, causative agent of black Sigatoka disease in Musa (AAA). Scientia Agropecuaria, 8(3), 273–278.

Kabenge, I., Omulo, G., Banadda, N., Seay, J., Zziwa, A., & Kiggundu, N. (2018). Characterization of Banana Peels Wastes as Potential Slow Pyrolysis Feedstock. Journal of Sustainable Development, 11(2), 14-24.

Marin-Armijos, J., García-Batista, R., & Barrezueta-Unda, S. (2018). Elaboracion de biocarbón obtenido a partir de la cáscara del cacao y raquis del banano Elaboration. Revista Agroecosistemas, 6(3), 75–81.

Robert, M., Thomas, A., Sekhar, M., Badiger, S., Ruiz, L., Willaume, M., Leenhardt, D., & Bergez, J. E. (2017). Farm Typology in the Berambadi Watershed (India): Farming Systems Are Determined by Farm Size and Access to Groundwater. Water, 9(1).

Tsai, C. H., Tsai, W. T., Liu, S. C., & Lin, Y. Q. (2018). Thermochemical characterization of biochar from cocoa pod husk prepared at low pyrolysis temperature. Biomass Conversion and Biorefinery, 8(2), 237–243.

Zhao, J., Shen, X. J., Domene, X., Alcañiz, J. M., Liao, X., & Palet, C. (2019). Comparison of biochars derived from different types of feedstock and their potential for heavy metal removal in multiple-metal solutions. Scientific Reports, 9(1).


Enlaces refback

  • No hay ningún enlace refback.


Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

ISSN on line: 2631-2662

ISSN impreso: 2661-6521